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ABSTRACT
We present HUDD, a tool that supports safety analysis practices for
systems enabled by Deep Neural Networks (DNNs) by automati-
cally identifying the root causes for DNN errors and retraining the
DNN. HUDD stands for Heatmap-based Unsupervised Debugging
of DNNs, it automatically clusters error-inducing images whose
results are due to common subsets of DNN neurons. The intent is
for the generated clusters to group error-inducing images having
common characteristics, that is, having a common root cause.

HUDD identifies root causes by applying a clustering algorithm
to matrices (i.e., heatmaps) capturing the relevance of every DNN
neuron on the DNN outcome. Also, HUDD retrains DNNs with
images that are automatically selected based on their relatedness to
the identified image clusters. Our empirical evaluation with DNNs
from the automotive domain have shown that HUDD automatically
identifies all the distinct root causes of DNN errors, thus supporting
safety analysis. Also, our retraining approach has shown to be more
effective at improving DNN accuracy than existing approaches.

A demo video of HUDD is available at
https://youtu.be/drjVakP7jdU.
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1 INTRODUCTION
Deep Neural Networks (DNNs) are common building blocks for
safety-critical cyber-physical systems (e.g., their perception layer),
particularly in the automotive sector. Common examples include
Advanced Driver Assistance Systems (ADAS), where DNNs are
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used to automate emergency braking and lane changing [21]. DNN-
enabled systems are a key product not only for large companies but
also for car component manufacturers [5, 23]. This is the case of
IEESensing [5], our industry partner, who develops in-vehicle mon-
itoring systems such as drowsiness detection and gaze detection
systems [13].

When DNN-based systems are used in a safety-critical context
(e.g., automotive), developers must comply with safety standards
such as ISO26262 [8] and ISO/PAS 21448 [9]. Such safety standards
enforce the identification of the situations in which the system
might be unsafe (i.e., outputs leading to safety violations) and the
design of countermeasures to put in place (e.g., integrating dif-
ferent types of sensors). However, since DNNs transform high-
dimensional vectors through a large number of activation functions
whose parameters are learned during training, engineers cannot
understand the rationale of predictions through manual inspection
of DNN code and, consequently, they cannot rely on traditional
safety analysis practices. For this reason, safety standards targeting
DNN-enabled systems (e.g., ISO/PAS 21448) suggest (1) to rely on
accuracy evaluation (i.e., test the DNN using inputs generated by
simulators or collected in the field) to identify unsafe scenarios
and (2) to rely on the manual inspection of error-inducing images
to perform root cause analysis (i.e., to understand what are the
characteristics of the inputs that lead to a DNN error).

In this context, quantitative targets for accuracy evaluation may
be used to demonstrate that unsafe situations are unlikely; however,
standards like ISO/PAS 21448 point out that quantitative targets
are not sufficient and that engineers remain liable for potentially
hazardous scenarios underrepresented in the test set.

Root cause analysis is expected to help reduce such liability
risk. Indeed, engineers can retrain the DNN with additional images
similar to the ones leading to DNN errors; however, the manual
identification of additional inputs to retrain the DNN is expensive.
Also, engineers can introduce countermeasures to make the system
robust against unsafe conditions (e.g., by relying on both radar and
vision to take decisions). Unfortunately, the manual identification
of unsafe conditions is error-prone. For example, engineers may
overlook unsafe conditions that are underrepresented in the test
set. Indeed, human body simulators may generate head images with
an horizontal angle determined based on a uniform distribution,
between 160 (head turned right) and 220 degrees (head turned left).
As a result, very few images with an angle of 160 or 220 degrees are
generated and, though it may be an unsafe condition (i.e., one eye is
barely visible and the gaze direction prediction may be inaccurate)
experiments based on test sets generated with such simulators may
suggest that the DNN is on average very accurate and engineers
may not notice such unsafe conditions.

https://youtu.be/drjVakP7jdU
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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Figure 1: Overview of the HUDD methodology.

Existing toolsets do not help engineers address the above-mentioned
problems. When inputs are images, existing solutions for root cause
analysis generate heatmaps that use colors to capture the impor-
tance of pixels in their contribution to a DNN result [12, 19]. By
inspecting the heatmaps generated for a set of erroneous results, a
human operator can determine that these heatmaps highlight the
same objects, which may suggest the root cause of the problem
(e.g., long hair [19]). Based on the identified root cause, engineers
can then retrain the DNN using additional images with similar
characteristics. Unfortunately, this process is expensive and error-
prone because it relies on the visual inspection of many generated
heatmaps.

In this paper, we present HUDD, the toolset that automates our
methodology for the identification of root causes for DNN errors
and DNN retraining [3]. HUDD relies on hierarchical agglomerative
clustering [10] to identify the distinct root causes of DNN errors. It
configures clustering with a specific distance function based on the
heatmaps computed for internal DNN layers. A subset of the images
belonging to each cluster is inspected by the engineer who is thus
helped in determining unsafe conditions (i.e., commonalities among
the images in a same cluster), including the infrequent ones (i.e.,
clusters with few members). Further, HUDD relies on the computed
clusters to identify new images to be used to retrain the DNN. Given
a potentially large set of unlabeled images, HUDD selects the subset
of images that are more likely to belong to the identified clusters.
These images are assumed to include potentially unsafe conditions
and are then used to retrain the DNN. We performed an empirical
evaluation on six DNNs. Our empirical results show that HUDD
can automatically and accurately identify the different root causes
of DNN errors. Also, our results show that the HUDD retraining
process improves DNN accuracy up to 30.24 percentage points and
is more effective than baseline approaches.

In the remaining sections, we present our methodology, outline
the tool, highlight the findings from our evaluation of HUDD with
six case studies, and compare with related work.

2 THE HUDD METHODOLOGY
HUDD works in seven steps, depicted in Figure 1.

In Step 1, HUDD takes as input the test set images leading to
a DNN error (hereafter, error-inducing test set images). A DNN

error might be either a wrong output label (for classifier DNNs)
or an output loss higher than a given threshold (for regression
DNNs). Step 1 consists of three activities: (1) generate heatmaps for
the error-inducing test set images, (2) compute a distance matrix
with the distances between every pair of images1, and (3) execute
hierarchical agglomerative clustering to group images based on the
computed distances. Step 1 leads to the identification of root cause
clusters (RCCs), i.e., clusters of images with a common root cause
for the observed DNN errors.

To generate heatmaps, HUDD relies on the Layer-Wise Relevance
Propagation (LRP) algorithm [12]. LRP enables the generation of
heatmaps for the internal layers of the DNN (internal heatmaps).
An internal heatmap for a layer 𝑘 consists of a matrix with the
relevance scores computed for all the neurons of that layer.

In Step 2, engineers inspect the RCCs (typically a subset of the
RCC images) to identify unsafe conditions, as required by functional
safety analysis. Figure 2 provides examples of RCCs generated for a
DNN that detects the gaze of an eye (Gaze-DNN) and for a DNN that
determines the position of a person’s head (HPD-DNN). Gaze-DNN
processes images generated with a simulator; HPD-DNN processes
real-world images.

The clusters in Figure 2 show that HUDD identifies root causes
that are associated with: (1) borderline cases (e.g., the gaze and
head pose angle detected by G3, C1, and C2), (2) an incomplete
training set (e.g, persons with a face turned left and eyes looking
right in C3), (3) an incomplete definition of the predicted classes
(i.e., the middle center gaze detected by cluster G4 and the closed
eyes detected by cluster G2) and (4) limitations in our capacity
to control the simulator (i.e., unlikely face positions detected by
cluster G1). The first two cases are addressed by HUDD retraining
procedures (i.e., Steps 4-7); also, borderline casesmay help engineers
identify countermeasures (e.g., an additional camera with a different
camera angle), the identification of countermeasures being part of
standard safety analysis practices. Finally, the other causes require
that engineers modify the DNN (e.g., to add an output class) or
improve the simulator.

In Step 3, engineers rely on real-world data or simulation software
to generate a new set of images to retrain and improve the DNN.
Step 3 is common practice and entails limited effort (e.g., acquiring
field images or configuring a simulator).

In Step 4, HUDD automatically identifies the subset of images be-
longing to the improvement set that are likely to lead to DNN errors,
referred to as unsafe set. It is obtained by assigning the images of
the improvement set to the RCCs according to their heatmap-based
distance. Since RCCs characterize only the portion of the input
space that is unsafe, images belonging to the improvement set may
not belong to any of these clusters. For this reason, HUDD selects
only images that are sufficiently close to cluster members based on
test set observations.

In Step 5, engineers manually label the images belonging to the
unsafe set. Different from traditional practice, which consists of
labelling a large set of additional images and select for retraining
the ones that lead to DNN errors, HUDD requires that engineers
label only a small subset of the improvement set (i.e., the images

1We rely on the Euclidean distance function applied to the heatmap of each image.
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Figure 2: Example of clustering results for two DNNs.

that likely lead to DNN errors because they belong to the identified
RCCs).

In Step 6, to improve the accuracy of the DNN for every root
cause observed, independently from their frequency of appearance,
HUDD balances the unsafe set with bootstrap resampling [6], i.e.,
it randomly duplicates the images belonging to the cluster until
every cluster has the same size.

In Step 7, HUDD retrains the DNNmodel by relying on a training
set that consists of the union of the original training set and the
balanced labeled unsafe set. HUDD uses the available model to set
the initial configuration for the DNN weights. The original training
set is retained to avoid reducing the accuracy of the DNN for parts
of the input space that do not show any error in the test set. The
retraining process is expected to lead to an improved DNN model
compared to that based on the original training set.

By driving the retraining based on the observed DNN errors,
HUDD enables engineers to demonstrate that they took measures
to improve safety, an important aspect to comply with regulations
(e.g., ISO/PAS 21448 highlights the importance to adopt methods
that reduce the unsafe portion of the input space [9]).

Steps 2, 3, and 5 are manual steps which are also part of state-
of-the-art solutions. But in the case of HUDD, the manual effort
required in such steps is much more limited than in existing ap-
proaches. With HUDD, in Step 2, engineers inspect a few images
per root cause clusters rather than the whole set of images result-
ing in significant cost savings and effective guidance towards the
identification of root causes. Step 3 is common practice and entails
limited effort such as buying field images or configuring a simulator.
Finally, in Step 5, engineers label only a subset of the improvement
set containing images that are likely to be unsafe and can be effec-
tively used for retraining. Without HUDD, engineers would have
to label a randomly selected subset of the improvement set, which
would contain fewer unsafe images and thus be less effective during
retraining.

3 ARCHITECTURE & USAGE
Figure 3 provides the architecture of the HUDD toolset. HUDD
is implemented in Python with the following dependencies. Ten-
sorflow [20] and PyTorch[15] are used for DNN models. NumPy,
an array programming library [2], is used for the manipulation
and storage of heatmaps. Pandas, a data analysis tool [14], is used
to compute heatmap distance matrices. Scipy, a library for scien-
tific computing [18], is used for the generation of clusters. Kneed,
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Figure 3: Architecture (left) and output structure (right).

a library that implements the kneedle algorithm [17], is used to
determine the optimal number of clusters.

The HUDD tool consists of a command line user interface called
HUDD.Helper and fivemodules: TestModule, HeatmapModule, Clus-
terModule, AssignModule, RetrainModule.

To execute HUDD, the engineer provides to the HUDD.Helper
the DNN model to be analyzed. The DNN under analysis shall be
stored in theDNNModels folder; the datasets shall be provided in the
DataSets folders TrainingSet, TestSet, and ImprovementSet. HUDD
relies on LRP and thus requires DNN models that integrate the
LRP backpropagation function. We provide an AlexNet model to
be used for classification tasks and a KPNet model that can be used
for regression tasks. However, DNN models can be easily extended
to integrate LRP-based heatmap generation by following existing
guidelines [16]. For example, our AlexNet implementation is an
extension of the PyTorch AlexNet. The HUDD.Helper orchestrates
the execution of all the other modules. The intermediate results
generated byHUDD are storedwithin the temporary folder T, which
is kept to enable further inspection of all the processed data.

The TestModule uses the DNN under analysis to process the
inputs in the training and test set. Outputs are exported in the files
trainResult.csv and testResult.csv. The former is used to compute
training set accuracy, which is used to determine if the improved
DNN is better than the original one (HUDD Step 7). The latter is
used to determine which are the error-inducing images to be used
to generate RCCs (Step 1).

The HeatmapModule generates heatmaps for error-inducing im-
ages. For each DNN layer, it stores, in the Heatmaps directory, a
NumPy file with the heatmaps of all the error-inducing images.

The ClusterModule, for each layer, computes the distance matrix
and exports it in an XLSX file. Also, it performs hierarchical ag-
glomerative clustering based on the heatmaps generated for each
layer and selects the optimal number of clusters. Finally, for each
𝐾𝑡ℎ layer, it stores the generated clusters in a directory called T/-
ClusterAnalysis/LayerK. The clusters for the layer showing the best
results (layer 𝑋 ) are copied in the parent folder (i.e., ./T/LayerX/ ).
For each RCC, the ClusterModule generates a directory with all the
images belonging to the cluster, which are to be visually inspected
by engineers as per HUDD Step 2.
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To simplify the inspection of RCCs, the ClusterModule also gen-
erates a set of animated GIF images, one for each cluster. Each
generated GIF image shows all the images belonging to a cluster
one after the other. Animated GIFs enable engineers to inspect a
large number of images in a few seconds (e.g., we configure our tool
to visualize 100 images per minute) thus facilitating the detection
of the common characteristics among them.

The AssignModule processes the ImprovementSet images and
stores the unsafe set in the folder UnsafeSet. Finally, the Retrain-
Module retrains the DNN using the images in the training and
unsafe sets. The retrained DNN model is saved in the DNNModels
directory.

Our toolset, case studies, and results are available online [1].

4 EMPIRICAL EVALUATION
This section provides an overview of the main findings of an evalu-
ation conducted to address the following research questions [3]:
RQ1 Does HUDD enable engineers to identify the root causes of

DNN errors?
RQ2 How does HUDD compare to traditional DNN accuracy im-

provement practices?
For our empirical evaluation, we considered six DNNs. A gaze

detection system (GD) that determines the gaze direction of a hu-
man face. A drowsiness detection system (OC) that features the
same architecture as the gaze detection system, except that the
DNN predicts whether eyes are closed. A head poses detection
system (HPD) that classifies the position of a person’s head in an
image according to nine classes: straight, bottom-left, left, top-left,
bottom-right, right, top-right, reclined, looking up. A facial land-
marks detection system (FLD) that identifies the location of the
pixels corresponding to 27 face landmarks delimiting seven face
elements. An object detection system (OD) that tries to detect the
existence of eyeglasses. A traffic signs recognition system (TSR)
that recognizes the presence of traffic signs in road images.

RQ1 investigates whether HUDD is feasible and generates RCCs
with images presenting a common set of characteristics that are
plausible causes of DNN errors.

To determine if the RCCs generated by HUDD include images
with common characteristics, we relied on images generated using
simulators. Since simulator images can be associated with the sim-
ulator parameter values used to generate them (e.g., the vertical
angle of a person’s head), we could objectively determine if the
images in the same cluster present common characteristics. Indeed,
a characteristic that is shared between the images in the same RCC
shall lead to a lower within-cluster variance, for at least one simula-
tor parameter, compared to the whole test set. Also, by focusing on
the parameters showing a high variance reduction (e.g., >50%), we
can objectively determine if the RCCs help engineers spot the root
cause of an error. Indeed, if the average value for such parameters
is close to a value that likely leads to error-inducing images (e.g., a
gaze angle that is borderline between two gaze directions) we can
assume that the RCC provides an explanation for the DNN error
that can be understood by the engineer inspecting the images.

Our results show that a very high percentage of the clusters (i.e.,
between 57% and 100%) include at least one parameter with 50%
reduction in variance, which means that, for most of the clusters,

Table 1: Percentage of manually inspected images for each
case study DNN.

Case study
DNN

# of failing images # Root cause
clusters

Percentage of manu-
ally inspected images

GD 5371 16 1.49%
OC 506 14 13.82%
HPD 1580 17 5.38%
FLD 1554 71 22.84%
OD 838 14 8.35%
TSR 2317 20 4.31%

engineers can identify commonalities among images. Also, all the
parameters with high reduction in variance are associated with
image characteristics that are plausible causes of errors.

To evaluate if the visual inspection of root cause clusters is
practically feasible, we report on the number of clusters generated
by HUDD. Precisely, the ratio of error-inducing images that should
be visually inspected when relying on HUDD, should provide an
indication of the time saved with respect to current practice (i.e.,
manual inspection of all the error-inducing images). To perform the
evaluation, based on our experience, we assumed that engineers
visually inspect five images for each root cause cluster. Table 1
provides summary data; we can observe that the ratio of error-
inducing images that is inspected with HUDD is low, ranging from
1.49% (GD) to 22.84% (FLD), with a median of 6.87%. This suggests
that the analysis supported by HUDD saves a great deal of effort
with respect to current practice (i.e., manual inspection of all the
error-inducing images). A user study concerning the time savings
introduced by HUDD is part of our future work

RQ2 concerns DNN improvement. We considered four DNNs
working with simulator images and two DNNs working with real-
world images. We compared HUDD with two baseline approaches:
(1) retraining with failing images selected from a subset of the im-
provement set and (2) retraining with random images. To avoid
bias, for all the considered approaches, we label the same number of
images. Experiments were repeated ten times. HUDD leads to sig-
nificantly larger accuracy improvements than baselines, increasing
DNN accuracy up to 30.24%.

5 RELATEDWORK
A number of tools supporting DNN explanation are available nowa-
days [4, 16]. However, for explanations concerning DNNs that pro-
cess images, such frameworks boil down to generating heatmaps
one for every error-inducing input image, that shall be visually
inspected by engineers. Example frameworks are INNvestigate [7]
and TorchRay [22]. The cost of the manual inspection of heatmaps
is one of the problems addressed by HUDD.

Research on the automated debugging and repair of DNNs is
still at very early stages and includes MODE [11] and Apricot[24].
Similarly to HUDD, MODE automatically identifies the images to
be used to retrain a DNN [11]. However, it cannot identify the root
causes of DNN errors, which is a major limitation in our context.
Also MODE entails repeated modification and retraining of the
DNN under test, which is an expensive endeavor. Further, no tool
implementing MODE is available. Finally, in our empirical evalua-
tion, we evaluated HUDD with an Object Detection (OD) classifier
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DNN that has been used for the evaluation of MODE. Despite dif-
ferences in the DNN architecture used by HUDD and MODE, both
models are trained on the same images. While MODE improves the
model’s overall accuracy from 83% to 89% (+6%), HUDD improves
the model’s overall accuracy from 84% to 97% (+13%). Apricot [24]
repairs DNNs by changing the weights of the DNN model; however,
an implementation of Apricot is not available. HUDD is the first
tool for the automated debugging of DNNs that is available for
reuse.

6 CONCLUSION
We introduced HUDD, a toolset that supports safety analysis prac-
tices for DNN-enabled safety-critical systems. It generates clusters
(i.e., root cause clusters, RCCs) containing misclassified input im-
ages sharing a common set of characteristics that are plausible
causes of errors. In addition, HUDD minimizes the effort required
to select and label additional images to be used to augment the
training set and improve the DNN.

Empirical evaluation with simulator images show that HUDD
generates clusters with images that provide explanations for DNN
errors; further, results with both simulated and real images show
how these clusters can be effectively used to select new images for
retraining, in a way that is more efficient than existing practices
and leading to better DNN accuracy.

HUDD is a software engineering tool to support the development
of ML-based systems. Indeed, by helping identify different plausible
causes of DNN errors, it supports engineers in specifying solutions
to improve the system. For example, (1) RCCs that highlight an
incomplete training set suggest further training, whereas (2) RCCs
with borderline cases may suggest introducing technical counter-
measures. Further, the automated retraining strategy implemented
by HUDD, in addition to supporting automated debugging, enables
engineers to justify their selection of retraining images according to
safety principles (i.e., to show the intent of eliminating root causes
of errors).
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